
A Palindrome Checker Program
This program determines if a given string is a palindrome. A palindrome is something that
reads the same forwards and backwards. For example, the words “level” and “radar” are
palindromes. The program imports the stack module developed in the previous section. This
program utilizes the following programming feature:

➤ Programmer-defined module

Example execution of the program is given here:

Task: In IDLE, open a new project and save at as Palindrome_yourLastName. Copy the code
from the sample on the next pages. Test and revise the program, as needed.

Notes:
The stack module is imported on line 3 of the program. The “import modulename” form of
im- port is used. Therefore, each stack function is referenced by stack.function_name. Lines
6–7 displays a simple program welcome. The following lines perform the required initialization
for the program. Line 10 sets char_stack to a new empty stack by call to getStack(). Line
11 initializes variable empty_string to the empty string. This is used in the program for
determining if the user has finished entering all the words to check.

The string to check is input by the user on line 14. If the string is of length one, then by definition
the string is a palindrome. This special case is handled in lines 17–18. Otherwise, the complete
string is checked. First, variable palindrome is initialized to True. On line 24, variable

compare_ length is set to half the length of the input string, using integer division to truncate
the length to an equal number of characters. This represents the number of characters from the
front of the string (working forward) that must match the number of characters on the rear of the
string (working backwards). If there are an odd number of characters, then the middle character
has no other character to match against.

On lines 27–28 the second half of the string chars are pushed character-by-character onto the
stack. Then, on lines 31–37 the characters are popped from the stack one by one, returning in
the reverse order that they were pushed. Thus, the first character popped (the last character
pushed on the stack) is compared to the first character of the complete string. This continues
until there are no more characters to be checked. If characters are found that do not match,
then is_palindrome is set to False (lines 34–35) and the while loop terminates. Otherwise,
is_palindrome remains True. Lines 40–43 output whether the input string is a palindrome
or not, based on the final value of is_palindrome. Lines 45–46 prompt the user for another
string to enter, and control returns to the top of the while loop.

It is important to mention that the problem of palindrome checking could be done more
efficiently without the use of a stack. A for loop can be used that compares the characters k
locations from each end of the given string. Thus, our use of a stack for this problem was for
demonstration purposes only. We leave the checking of palindromes by iteration as a chapter
exercise.

	A Palindrome Checker Program
	Notes:

